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Consider a closed polygonal line in plane. Regard the edges of this line as rigid bars
and the vertices of this line as hinges that allow the angles between consecutive bars to
change arbitrarily. Deformations of such mechanism that are not induced by ambient
rotations of the plane are called flexions. It is well known that any triangle is rigid,
i. e., admits no flexions, and a generic polygon with at least four edges is flexible.Now,
consider a closed polyhedral surface in three-space, regard the faces of this surface as
rigid plates and the edges of this surface as hinges that allow the dihedral angles between
adjacent plates to change arbitrarily. Such mechanism is called a flexible polyhedron if
it admits a deformation not induced by an ambient rotation of three-space. It turns out
that the situation changes drastically when we pass from dimension 2 to dimension 3.
For instance, a generic polyhedron of any combinatorial type is rigid. Moreover, it
is rather hard to construct flexible polyhedra. The first examples of such sort were
flexible self-intersecting polyhedral surfaces with the combinatorial type of an octahedron
constructed by Bricard [1]. The first example of an embedded flexible polyhedral surface
was constructed by Connelly [2]. The concept of a flexible polyhedron can be easily
generalized to higher dimensions. Nevertheless, until recent results by the speaker only
three- and four-dimensional examples were known. One of the most amazing conjectures
concerning flexible polyhedra is the so-called Bellows conjecture claiming that the volume
of any flexible polyhedron is constant during the flexion. The proof of this conjecture for
flexible polyhedra in the Euclidean three-space by Sabitov [8], [9] was one of the most
important breakthroughs in theory of flexible polyhedra; another proof was obtained
in [3]. Notice that the area of a flexible polygon in plane is by no means constant, i. e.,
the analog of the Bellows conjecture in dimension 2 is obviously false.In this talk we
shall describe the overall situation in theory of flexible polyhedra. In particular, we shall
discuss the progress in several problems in this area achieved in a series of recent papers
by the speaker [4]–[7]. This will include:

• The first examples of self-intersecting flexible polyhedra in dimensions 5 and higher
in all spaces of constant curvature, i. e., in the Euclidean spaces En, in the Lobachev-
sky spaces Λn, and in the open hemispheres Sn+.

• The first examples of embedded flexible polyhedra in the open hemispheres Sn+
for all n ≥ 4. The volumes of these polyhedra change during the flexions, which
disproves the Bellows conjecture in Sn+.

• The proof of the Bellows conjecture for flexible polyhedra in Euclidean spaces of
dimensions 4 and higher, and for bounded flexible polyhedra in odd-dimensional
Lobachevsky spaces.



The proofs of these results establish connections of theory of flexible polyhedra with
various branches of modern mathematics, in particular, with algebraic geometry, combi-
natorial topology, elliptic functions, and complex analysis.
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