Martingale Optimal Transport

H. Mete Soner (ETH Zurich)

In the classical optimal transport problem, one is given two probability measures μ, ν on \mathbb{R}^d and a function c on $\Omega := \mathbb{R}^d \times \mathbb{R}^d$ and looksfor an extremal map that transports μ to ν . The optimization criteria is given through c. The celebrated Kantarovich dual of this problem is to minimize $\mathcal{L}(h,g) := \int h d\mu + \int g d\nu$, over all integrable functions h,g of \mathbb{R}^d that satisfy the inequality $h \oplus g(z) := h(x) + g(y) \geq c(z)$ for every $z = (x,y) \in \Omega$. Then, the maximal value is given through by optimizing $\mathbb{E}_{\mathbb{Q}}[c]$ over $\mathcal{M}(\mu,\nu)$, where a probability measures \mathbb{Q} on Borel sets of Ω is in this set if it satisfies the marginal constraints

$$\mathbb{E}_{\mathbb{Q}}[h \oplus \mathbf{0}] = \int h d\mu, \quad \mathbb{E}_{\mathbb{Q}}[\mathbf{0} \oplus g] = \int g d\nu, \quad orall \ h, g,$$

where $\mathbf{0}$ is zero function and $\mathbb{E}_{\mathbb{Q}}$ is the expectation with respect to the probability measure \mathbb{Q} . The martingale optimal transport on Ω replaces the above constraint by requiring that there exists a measurable function γ such that

$$h \oplus g(z) + \gamma(x) \cdot (y - x) \ge c(z), \quad \forall z = (x, y) \in \Omega.$$

The dual of this problem is again to maximize $\mathbb{E}_{\mathbb{Q}}[c]$ but over a smaller set $\mathcal{Q}(\mu, \nu)$. Indeed, $\mathbb{Q} \in \mathcal{M}(\mu, \nu)$ is in this setif it is a martingale measure. Namely,

$$\mathbb{E}_{\mathbb{Q}}[\gamma(x)\cdot(y-x)] = 0$$

for every bounded measurable γ . Extensions of this problem to the cases when Ω is the set of continuous functions is given in [1] and to the Skorokhod space in [2]. In this talk, we outline these and related results in martingale optimal transport.

References

- [1] DOLINSKY, Y. AND SONER, H. M. (2013). Martingale Optimal Transport and Robust Hedging in Continuous Time. *Probability Theory Related Fields.* **160(1-2)**, 391–427.
- [2] Dolinsky, Y. and Soner, H. M. (2014). Martingale Optimal Transportin the Skorokhod Space. (2015), Stochastic Processes and its Applications, 125, 3893-3931.