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Starting from the pioneering paper of OTTO-VILLANI [11], the link between optimal
transport and Ricci curvature in smooth Riemannian geometry has been deeply stud-
ied [8, 13]. Among the various functional and analytic applications, the point of view
of Optimal Transport has played a crucial role in the LOTT-STURM-VILLANI [10, 12]
formulation of a “synthetic” notion of lower Ricci curvature bound, which has been ex-
tended from the realm of smooth Riemannian manifolds to the general framework of
metric measure spaces (X, d, m), i.e. (separable, complete) metric spaces endowed with
a locally finite Borel measure m.

Lower Ricci curvature bounds can also be captured by the celebrated BAKRY-EMERY
[6] approach based on Markov semigroups, diffusion operators and I'-calculus for local
Dirichlet forms [7].

We will discuss a series of recent contributions [3, 4, 5, 9, 1| showing the link between
the two approaches and the metric-variational theory of gradient flows 2] and diffusion
equations. As a byproduct, when the Cheeger energy on (X,d,m) is quadratic (or,
equivalently, the Sobolev space W12(X,d, m) is Hilbertian), we will show that the two
approaches lead to essentially equivalent definitions and to a nice geometric framework
suitable for deep analytic results.
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