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Starting from the pioneering paper of Otto-Villani [11], the link between optimal
transport and Ricci curvature in smooth Riemannian geometry has been deeply stud-
ied [8, 13]. Among the various functional and analytic applications, the point of view
of Optimal Transport has played a crucial role in the Lott-Sturm-Villani [10, 12]
formulation of a “synthetic” notion of lower Ricci curvature bound, which has been ex-
tended from the realm of smooth Riemannian manifolds to the general framework of
metric measure spaces (X, d,m), i.e. (separable, complete) metric spaces endowed with
a locally finite Borel measure m.
Lower Ricci curvature bounds can also be captured by the celebrated Bakry-Émery

[6] approach based on Markov semigroups, diffusion operators and Γ-calculus for local
Dirichlet forms [7].
We will discuss a series of recent contributions [3, 4, 5, 9, 1] showing the link between

the two approaches and the metric-variational theory of gradient flows [2] and diffusion
equations. As a byproduct, when the Cheeger energy on (X, d,m) is quadratic (or,
equivalently, the Sobolev space W 1,2(X, d,m) is Hilbertian), we will show that the two
approaches lead to essentially equivalent definitions and to a nice geometric framework
suitable for deep analytic results.
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